Modules with chain conditions up to isomorphism and artinian dimension

Alberto Facchini Università di Padova

Lens, 13 June 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint work with Zahra Nazemian

F. and Nazemian, *Modules with chain conditions up to isomorphism*, J. Algebra **453** (2016), 578–601.

F. and Nazemian, *Artinian dimension and isoradical of modules*, J. Algebra **484** (2017), 66–87.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

F. and Nazemian, *Modules with chain conditions up to isomorphism*, J. Algebra **453** (2016), 578–601.

F. and Nazemian, *Artinian dimension and isoradical of modules*, J. Algebra **484** (2017), 66–87.

We study modules with chain conditions up to isomorphism, in the following sense.

Classical definition

Module = a right module M_R over a fixed associative ring R with identity $1 \neq 0$.

Module = a right module M_R over a fixed associative ring R with identity $1 \neq 0$.

A right module M is *artinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that $M_n = M_i$ for every $i \ge n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Module M = a module M_R over a fixed associative ring R with identity $1 \neq 0$.

A right module M is *artinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that $M_n = M_i$ for every $i \ge n$.

A right module M is *isoartinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that M_n is isomorphic to M_i for every $i \ge n$.

Module M = a module M_R over a fixed associative ring R with identity $1 \neq 0$.

A right module M is *artinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that $M_n = M_i$ for every $i \ge n$.

A right module M is *isoartinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that M_n is isomorphic to M_i for every $i \ge n$.

Examples:

Module M = a module M_R over a fixed associative ring R with identity $1 \neq 0$.

A right module M is *artinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that $M_n = M_i$ for every $i \ge n$.

A right module M is *isoartinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that M_n is isomorphic to M_i for every $i \ge n$.

Examples: $\mathbb{Z}_{\mathbb{Z}}$

Module M = a module M_R over a fixed associative ring R with identity $1 \neq 0$.

A right module M is *artinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that $M_n = M_i$ for every $i \ge n$.

A right module M is *isoartinian* if, for every descending chain $M \ge M_1 \ge M_2 \ge \ldots$ of submodules of M, there exists an index $n \ge 1$ such that M_n is isomorphic to M_i for every $i \ge n$.

Examples: $\mathbb{Z}_{\mathbb{Z}}$, any vector space V_k over a field k.

Right artinian rings

Classical definition: A ring R is right artinian if R_R is an artinian module.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical definition: A ring R is right artinian if R_R is an artinian module.

Iso definition: A ring R is right isoartinian if R_R is an isoartinian module.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical definition: A module M is noetherian if, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n = M_i$ for every $i \geq n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical definition: A module M is noetherian if, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n = M_i$ for every $i \geq n$.

Iso definition: A module M is isonoetherian if, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n \cong M_i$ for every $i \geq n$.

Classical definition: M is simple if it is non-zero and every non-zero submodule of M is equal to M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical definition: M is simple if it is non-zero and every non-zero submodule of M is equal to M.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Iso definition: We say that M is isosimple if it is non-zero and every non-zero submodule of M is isomorphic to M.

Classical definition: M is simple if it is non-zero and every non-zero submodule of M is equal to M.

Iso definition: We say that M is isosimple if it is non-zero and every non-zero submodule of M is isomorphic to M.

We find in these "iso" notions a surprising analogy with the classical case of artinian, noetherian and simple modules.

Standard characterizations of noetherian modules

Classical result:

Proposition

The following conditions are equivalent for a right module M: (i) M is noetherian (that is, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n = M_i$ for every $i \geq n$.) (ii) Every non-empty chain of submodules of M has a greatest element.

(iii) Every nonempty set of submodules of M has a maximal element.

Characterizations of isonoetherian modules

"Iso" result:

Proposition

The following conditions are equivalent for a right module M: (i) M is isonoetherian (that is, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n \cong M_i$ for every $i \geq n$.)

Characterizations of isonoetherian modules

"Iso" result:

Proposition

The following conditions are equivalent for a right module M: (i) M is isonoetherian (that is, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n \cong M_i$ for every $i \geq n$.) (ii) For every non-empty chain C of submodules of M, there exists $N \in C$ such that, for every $N' \geq N$, if $N' \in C$, then $N \cong N'$.

Characterizations of isonoetherian modules

"Iso" result:

Proposition

The following conditions are equivalent for a right module M: (i) M is isonoetherian (that is, for every ascending chain $M_1 \leq M_2 \leq \ldots$ of submodules of M, there exists an index $n \geq 1$ such that $M_n \cong M_i$ for every $i \geq n$.) (ii) For every non-empty chain C of submodules of M, there exists $N \in C$ such that, for every $N' \geq N$, if $N' \in C$, then $N \cong N'$. (iii) For every non-empty set \mathcal{F} of submodules of M, there exists $N \in \mathcal{F}$ such that, for every $N' \geq N$, if $N' \in \mathcal{F}$, then $N \cong N'$. Artinian modules are essential extensions of their socle

Classical result:

Theorem

Any artinian module M contains an essential submodule that is a direct sum of simple modules.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Artinian modules are essential extensions of their socle

Classical result:

Theorem

Any artinian module M contains an essential submodule that is a direct sum of simple modules.

Iso result:

Theorem

Any isoartinian module M contains an essential submodule that is a direct sum of isosimple modules.

Non-zero endomorphisms of simple modules

Classical result:

Lemma

Every non-zero endomorphism of a simple module is a bijective mapping.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-zero endomorphisms of simple modules

Classical result:

Lemma

Every non-zero endomorphism of a simple module is a bijective mapping.

Iso result:

Lemma

Every non-zero endomorphism of an isosimple module is an injective mapping.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Endomorphism rings of simple modules

Classical result (Schur's Lemma):

Lemma

The endomorphism ring of a simple module is a division ring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Endomorphism rings of simple modules

Classical result (Schur's Lemma):

Lemma

The endomorphism ring of a simple module is a division ring.

Iso result:

Lemma

The endomorphism ring of an isosimple right module is a right Ore domain, whose principal right ideals form a noetherian modular lattice with respect to inclusion.

Semiprime ring

A ring R is *semiprime* if for every two-sided ideal I of R and every integer n > 0, $I^n = 0$ implies I = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semiprime ring

A ring *R* is *semiprime* if for every two-sided ideal *I* of *R* and every integer n > 0, $I^n = 0$ implies I = 0. (= *R* has no non-zero nilpotent two-sided ideal.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semiprime ring

A ring *R* is *semiprime* if for every two-sided ideal *I* of *R* and every integer n > 0, $I^n = 0$ implies I = 0. (= *R* has no non-zero nilpotent two-sided ideal.)

A commutative ring R is semiprime if and only if it has no non-zero nilpotent elements (= R is *reduced*).

The Artin-Wedderburn Theorem (semiprime right artinian rings)

Classical result:

Theorem

The following conditions are equivalent for a ring R.

- (i) R is a semiprime right artinian ring.
- (ii) Every right R-module is projective.
- (iii) Every right R-module is injective.
- (iv) Every right R-module is semisimple.

The Artin-Wedderburn Theorem (semiprime right artinian rings)

- (v) Every short exact sequence of right *R*-modules splits.
- (vi) The module R_R is semisimple, i.e., a (direct) sum of simple right ideals.
- (vii) R is right artinian and has no non-zero nilpotent right ideal.
- (viii) There exist integers $t, n_1, \ldots, n_t \ge 1$ and division rings D_1, \ldots, D_t such that

$$R \cong M_{n_1}(D_1) \times \cdots \times M_{n_t}(D_t). \tag{1}$$

The corresponding iso result for semiprime right isoartinian rings

Theorem

The following conditions are equivalent for a semiprime right isoartinian ring *R*:

- (i) R is right noetherian.
- (ii) R is right Goldie.
- (iii) R_R has finite Goldie dimension.
- (iv) If S is an isosimple right ideal of R and I_S the ideal which is the sum of all the right ideals isomorphic to S, then I_S is a finite direct sum of isosimple right ideals.

(v) R_R is a (direct) sum of isosimple right ideals.

The Wedderburn Theorem

Classical result:

Theorem

(The Wedderburn Theorem) A ring R is simple and right artinian if and only if R is a matrix ring over a division ring.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Wedderburn Theorem

Classical result:

Theorem

(The Wedderburn Theorem) A ring R is simple and right artinian if and only if R is a matrix ring over a division ring.

Iso result:

Theorem

A ring R is simple and right isoartinian if and only if R is a matrix ring over a simple principal right ideal domain.

Commutative semiprime rings

Classical result:

Proposition

A commutative semiprime ring is artinian if and only if it is isomorphic to a finite direct product of fields.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Commutative semiprime rings

Classical result:

Proposition

A commutative semiprime ring is artinian if and only if it is isomorphic to a finite direct product of fields.

Iso result:

Proposition

A commutative semiprime ring is isoartinian if and only if it is isomorphic to a finite direct product of principal ideal domains.

Classical result:

Proposition

Every noetherian module has finite Goldie dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classical result:

Proposition Every noetherian module has finite Goldie dimension.

Iso result:

Proposition

Every isonoetherian module has finite Goldie dimension.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical result (Goldie):

Theorem

An integral domain D is right Ore if and only if D_D is uniform, if and only if D_D has finite Goldie dimension. In particular, right noetherian domains are right Ore domains.

Classical result (Goldie):

Theorem

An integral domain D is right Ore if and only if D_D is uniform, if and only if D_D has finite Goldie dimension. In particular, right noetherian domains are right Ore domains.

Iso result:

Theorem

If D is a right isonoetherian domain, then D is a right Ore domain.

Classical definition: The class \mathcal{K}_{α} of modules of Krull dimension α is defined as follows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical definition:

The class \mathcal{K}_{α} of modules of Krull dimension α is defined as follows. The class \mathcal{K}_{-1} contains all modules M = 0.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Classical definition:

The class \mathcal{K}_{α} of modules of Krull dimension α is defined as follows. The class \mathcal{K}_{-1} contains all modules M = 0. If the class \mathcal{K}_{β} of modules of Krull dimension β has been defined for every $\beta < \alpha$, then \mathcal{K}_{α} is defined as the class of all modules M such that

Classical definition:

The class \mathcal{K}_{α} of modules of Krull dimension α is defined as follows. The class \mathcal{K}_{-1} contains all modules M = 0. If the class \mathcal{K}_{β} of modules of Krull dimension β has been defined for every $\beta < \alpha$, then \mathcal{K}_{α} is defined as the class of all modules M such that (a) $M \notin \bigcup_{\beta < \alpha} \mathcal{K}_{\beta}$;

Classical definition:

The class \mathcal{K}_{α} of modules of Krull dimension α is defined as follows. The class \mathcal{K}_{-1} contains all modules M = 0. If the class \mathcal{K}_{β} of modules of Krull dimension β has been defined for every $\beta < \alpha$, then \mathcal{K}_{α} is defined as the class of all modules M such that (a) $M \notin \bigcup_{\beta < \alpha} \mathcal{K}_{\beta}$;

(b) for every countable descending chain $A_0 \ge A_1 \ge A_2 \ge \ldots$ of submodules of M, there exists an index n such that the factors A_i/A_{i+1} belong to $\bigcup_{\beta < \alpha} \mathcal{K}_\beta$ for every $i \ge n$.

If $M \notin \mathcal{K}_{\alpha}$ for every α one says that M fails to have Krull dimension, or that $K.dim(M_R)$ is not defined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $M \notin \mathcal{K}_{\alpha}$ for every α one says that M fails to have Krull dimension, or that $K.dim(M_R)$ is not defined.

Thus, K.dim $(M_R) = -1$ if and only if $M_R = 0$

If $M \notin \mathcal{K}_{\alpha}$ for every α one says that M fails to have Krull dimension, or that $K.dim(M_R)$ is not defined.

Thus, K.dim $(M_R) = -1$ if and only if $M_R = 0$

K.dim $(M_R) = 0$ if and only if M_R is a non-zero artinian module.

Iso definition:

Iso definition: Let R be a ring and A be the class of all artinian right R-modules.

(ロ)、(型)、(E)、(E)、 E) の(の)

Iso definition:

Let R be a ring and A be the class of all artinian right R-modules. Let A_0 be the set containing only the zero module, and set $A_1 := A$.

Iso definition:

Let *R* be a ring and *A* be the class of all artinian right *R*-modules. Let A_0 be the set containing only the zero module, and set $A_1 := A$. Define by induction, for every ordinal number $\alpha > 1$, A_α to be the class of all the right *R*-modules *M* for which, for every submodule *N* of *M*, either $N \cong M$ or $N \in \bigcup_{\beta < \alpha} A_\beta$.

Iso definition:

Let R be a ring and A be the class of all artinian right R-modules. Let A_0 be the set containing only the zero module, and set $A_1 := A$. Define by induction, for every ordinal number $\alpha > 1$, A_α to be the class of all the right R-modules M for which, for every submodule N of M, either $N \cong M$ or $N \in \bigcup_{\beta < \alpha} A_\beta$. If a module M belongs to some A_α , we say that M has artinian dimension and the least such α is the artinian dimension of M, denoted by art. dim(M).

Iso definition:

Let R be a ring and A be the class of all artinian right R-modules. Let A_0 be the set containing only the zero module, and set $A_1 := A$. Define by induction, for every ordinal number $\alpha > 1$, A_α to be the class of all the right R-modules M for which, for every submodule N of M, either $N \cong M$ or $N \in \bigcup_{\beta < \alpha} A_\beta$. If a module M belongs to some A_α , we say that M has artinian dimension and the least such α is the artinian dimension of M, denoted by art. dim(M). If M does not belong to any A_α , we say that M does not have artinian dimension.

Thus:

Thus:

(1) The zero module is of artinian dimension 0.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Thus:

(1) The zero module is of artinian dimension 0.

(2) Artinian modules are of artinian dimension 1.

Thus:

(1) The zero module is of artinian dimension 0.

(2) Artinian modules are of artinian dimension 1.

(3) If a module M has artinian dimension, then its submodules have artinian dimension $\leq \operatorname{art.dim}(M)$.

Artininan dimension, isoartinian modules, semisimple artinian rings

Theorem

A module has artinian dimension if and only if it is isoartinian.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Artininan dimension, isoartinian modules, semisimple artinian rings

Theorem

A module has artinian dimension if and only if it is isoartinian.

Theorem

A ring R is semisimple artinian if and only if all right R-modules have artinian dimension.

Classical definition: The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Classical definition:

The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Iso definition:

Classical definition:

The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Iso definition:

The *right isoradical* I-rad (R_R) of a ring R is the intersection of the annihilators of all isosimple right R-modules.

Classical definition:

The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Iso definition:

The *right isoradical* I-rad (R_R) of a ring R is the intersection of the annihilators of all isosimple right R-modules.

Clearly:

Classical definition:

The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Iso definition:

The *right isoradical* I-rad (R_R) of a ring R is the intersection of the annihilators of all isosimple right R-modules.

Clearly: (1) I-rad(R_R) is a two-sided ideal of R.

Classical definition:

The (right Jacobson) radical $rad(R_R)$ of a ring R is the intersection of the annihilators of all simple right R-modules.

Iso definition:

The *right isoradical* I-rad (R_R) of a ring R is the intersection of the annihilators of all isosimple right R-modules.

Clearly: (1) I-rad(R_R) is a two-sided ideal of R. (2) I-rad(R_R) \subseteq rad(R) of R. There exist right noetherian right chain domains in which the right isoradical and the left isoradical are different.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Radical zero

Classical result:

Proposition

A right artinian ring R is semiprime if and only if its (right Jacobson) radical rad(R) is zero.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Radical zero

Classical result:

Proposition

A right artinian ring R is semiprime if and only if its (right Jacobson) radical rad(R) is zero.

Iso result:

Proposition

A right isoartinian ring R is semiprime if and only if its right isoradical I-rad (R_R) is zero.

Socle and isosocle

Classical definition:

The socle $soc(M_R)$ of a module M_R is the sum of all simple submodules of M_R .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical definition:

The socle $soc(M_R)$ of a module M_R is the sum of all simple submodules of M_R .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \mathcal{U} be any class of right R-modules
Classical definition:

The socle $soc(M_R)$ of a module M_R is the sum of all simple submodules of M_R .

Let \mathcal{U} be any class of right *R*-modules and Gen(\mathcal{U}) the class of all right modules M_R for which there exist an indexed set $(U_{\alpha})_{\alpha \in A}$ in \mathcal{U} and an epimorphism $\bigoplus_{\alpha \in A} U_{\alpha} \to M$.

Classical definition:

The socle $soc(M_R)$ of a module M_R is the sum of all simple submodules of M_R .

Let \mathcal{U} be any class of right *R*-modules and Gen(\mathcal{U}) the class of all right modules M_R for which there exist an indexed set $(U_{\alpha})_{\alpha \in A}$ in \mathcal{U} and an epimorphism $\bigoplus_{\alpha \in A} U_{\alpha} \to M$.

Set $\operatorname{Tr}_{M}(\mathcal{U}) := \sum \{ h(U) \mid h \colon U \to M \text{ is a homomorphism for some } U \in \mathcal{U} \}$. Thus $M \in \operatorname{Gen}(\mathcal{U})$ if and only if $\operatorname{Tr}_{M}(\mathcal{U}) = M$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Iso definition: For \mathcal{U} the class of all isosimple right *R*-modules, $\operatorname{Tr}_{M}(\mathcal{U}) := \operatorname{I-soc}(M)$, the *I-socle* of M_{R} .

Iso definition: For \mathcal{U} the class of all isosimple right *R*-modules, $\operatorname{Tr}_{M}(\mathcal{U}) := \operatorname{I-soc}(M)$, the *I-socle* of M_{R} .

(1) $\operatorname{soc}(M_R) \leq \operatorname{I-soc}(M)$.

Iso definition: For \mathcal{U} the class of all isosimple right *R*-modules, $\operatorname{Tr}_{M}(\mathcal{U}) := \operatorname{I-soc}(M)$, the *I-socle* of M_{R} .

(1) $\operatorname{soc}(M_R) \leq \operatorname{I-soc}(M)$.

(2) If M_R is a nonsingular module, then $1-soc(M_R) = M_R$ if and only if M_R is the sum of its isosimple submodules.

Classical result:

Theorem

The following conditions are equivalent for a ring R:

- (1) R is semisimple artinian.
- $(2) \, \operatorname{soc}(R) = R.$
- (3) R is a sum of simple right ideals.
- (4) For any right R-module M, soc(M) = M.
- (5) R is a finite direct product of matrix rings over division rings.

(6) R is a direct sum of simple right ideals.

Iso result:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Iso result:

Theorem

The following conditions are equivalent for a ring R:

- (1) I-soc(R) = R.
- (2) R is a sum of isosimple right ideals.
- (3) For any right R-module M, I-soc(M) = M.

(4) *R* is a finite direct product of prime right noetherian rings, each of which is a sum of isosimple right ideals.

Theorem

The following conditions are equivalent for a ring R:

(1) *R* is a finite direct product of matrix rings over principal right ideal domains.

- (2) R is a direct sum of isosimple right ideals.
- (3) R is right semihereditary and $I-soc(R_R) = R$.
- (4) R is a semiprime right isoartinian right noetherian ring.

(5) R is a semiprime right isoartinian ring and R_R is of finite uniform dimension.

Modules of finite I-length

We say that a chain $0 = P_0 < P_1 < \cdots < P_n = M$ of submodules of M is an I-series for M if $P_i \ncong P_{i+1}$ for each i and, for every submodule K of M with $P_i \le K \le P_{i+1}$, we have that either $K \cong P_i$ or $K \cong P_{i+1}$.

Modules of finite I-length

We say that a chain $0 = P_0 < P_1 < \cdots < P_n = M$ of submodules of M is an *I-series* for M if $P_i \ncong P_{i+1}$ for each i and, for every submodule K of M with $P_i \le K \le P_{i+1}$, we have that either $K \cong P_i$ or $K \cong P_{i+1}$. A module M is said to be of finite *I-length* if it has an *I-series*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modules of finite I-length

We say that a chain $0 = P_0 < P_1 < \cdots < P_n = M$ of submodules of M is an *l-series* for M if $P_i \ncong P_{i+1}$ for each i and, for every submodule K of M with $P_i \le K \le P_{i+1}$, we have that either $K \cong P_i$ or $K \cong P_{i+1}$. A module M is said to be of finite *l-length* if it has an *l-series*. In this case, the least such n is called the *l-length* of M, $0 = P_0 < P_1 < \cdots < P_n = M$ is called an *l-length* series for M, and we write *l-length*(M) = n.

Classical result:

Proposition

A module is both noetherian and artinian if and only if it is of finite length.

Classical result:

Proposition

A module is both noetherian and artinian if and only if it is of finite length.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Iso result:

Classical result:

Proposition

A module is both noetherian and artinian if and only if it is of finite length.

Iso result:

Proposition

Let M be a module that is both isonoetherian and isoartinian. Then M is of finite I-length.

Classical result:

Proposition

A module is both noetherian and artinian if and only if it is of finite length.

Iso result:

Proposition

Let M be a module that is both isonoetherian and isoartinian. Then M is of finite I-length.

We don't know if the converse of this proposition holds. We only have some partial results.

Some things are different

Proposition

If *R* is right artinian (right noetherian), then every finitely generated right *R*-module is right artinian (right noetherian).

Some things are different

Proposition

If *R* is right artinian (right noetherian), then every finitely generated right *R*-module is right artinian (right noetherian).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

But:

Some things are different

Proposition

If *R* is right artinian (right noetherian), then every finitely generated right *R*-module is right artinian (right noetherian).

But:

There exist right isoartinian rings with cyclic right modules that are not isoartinian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <