
Modules with chain conditions up to isomorphism
and artinian dimension

Alberto Facchini
Università di Padova
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Classical definition

Module = a right module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.



Classical definition

Module = a right module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.



New “iso” definition

Module M = a module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.

A right module M is isoartinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn is isomorphic to Mi for every i ≥ n.

Examples: ZZ, any vector space Vk over a field k .



New “iso” definition

Module M = a module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.

A right module M is isoartinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn is isomorphic to Mi for every i ≥ n.

Examples:

ZZ, any vector space Vk over a field k .



New “iso” definition

Module M = a module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.

A right module M is isoartinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn is isomorphic to Mi for every i ≥ n.

Examples: ZZ

, any vector space Vk over a field k .



New “iso” definition

Module M = a module MR over a fixed associative ring R with
identity 1 6= 0.

A right module M is artinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn = Mi for every i ≥ n.

A right module M is isoartinian if, for every descending chain
M ≥ M1 ≥ M2 ≥ . . . of submodules of M, there exists an index
n ≥ 1 such that Mn is isomorphic to Mi for every i ≥ n.

Examples: ZZ, any vector space Vk over a field k .



Right artinian rings

Classical definition: A ring R is right artinian if RR is an artinian
module.

Iso definition: A ring R is right isoartinian if RR is an isoartinian
module.
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(Iso)simple modules

Classical definition: M is simple if it is non-zero and every non-zero
submodule of M is equal to M.

Iso definition: We say that M is isosimple if it is non-zero and
every non-zero submodule of M is isomorphic to M.

We find in these “iso” notions a surprising analogy with the
classical case of artinian, noetherian and simple modules.
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Standard characterizations of noetherian modules

Classical result:

Proposition

The following conditions are equivalent for a right module M:
(i) M is noetherian (that is, for every ascending chain
M1 ≤ M2 ≤ . . . of submodules of M, there exists an index n ≥ 1
such that Mn = Mi for every i ≥ n.)
(ii) Every non-empty chain of submodules of M has a greatest
element.
(iii) Every nonempty set of submodules of M has a maximal
element.



Characterizations of isonoetherian modules

“Iso” result:

Proposition

The following conditions are equivalent for a right module M:
(i) M is isonoetherian (that is, for every ascending chain
M1 ≤ M2 ≤ . . . of submodules of M, there exists an index n ≥ 1
such that Mn

∼= Mi for every i ≥ n.)

(ii) For every non-empty chain C of submodules of M, there exists
N ∈ C such that, for every N ′ ≥ N, if N ′ ∈ C, then N ∼= N ′.
(iii) For every non-empty set F of submodules of M, there exists
N ∈ F such that, for every N ′ ≥ N, if N ′ ∈ F , then N ∼= N ′.
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Artinian modules are essential extensions of their socle

Classical result:

Theorem
Any artinian module M contains an essential submodule that is a
direct sum of simple modules.

Iso result:

Theorem
Any isoartinian module M contains an essential submodule that is
a direct sum of isosimple modules.
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Non-zero endomorphisms of simple modules

Classical result:

Lemma
Every non-zero endomorphism of a simple module is a bijective
mapping.

Iso result:

Lemma
Every non-zero endomorphism of an isosimple module is an
injective mapping.
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Endomorphism rings of simple modules

Classical result (Schur’s Lemma):

Lemma
The endomorphism ring of a simple module is a division ring.

Iso result:

Lemma
The endomorphism ring of an isosimple right module is a right Ore
domain, whose principal right ideals form a noetherian modular
lattice with respect to inclusion.
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Semiprime ring

A ring R is semiprime if for every two-sided ideal I of R and every
integer n > 0, I n = 0 implies I = 0.

(= R has no non-zero
nilpotent two-sided ideal. )

A commutative ring R is semiprime if and only if it has no
non-zero nilpotent elements (= R is reduced).
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The Artin-Wedderburn Theorem (semiprime right artinian
rings)

Classical result:

Theorem
The following conditions are equivalent for a ring R.

(i) R is a semiprime right artinian ring.

(ii) Every right R-module is projective.

(iii) Every right R-module is injective.

(iv) Every right R-module is semisimple.



The Artin-Wedderburn Theorem (semiprime right artinian
rings)

(v) Every short exact sequence of right R-modules splits.

(vi) The module RR is semisimple, i.e., a (direct) sum of simple
right ideals.

(vii) R is right artinian and has no non-zero nilpotent right ideal.

(viii) There exist integers t, n1, . . . , nt ≥ 1 and division rings
D1, . . . ,Dt such that

R ∼= Mn1(D1)× · · · ×Mnt (Dt). (1)



The corresponding iso result for semiprime right isoartinian
rings

Theorem
The following conditions are equivalent for a semiprime right
isoartinian ring R:

(i) R is right noetherian.

(ii) R is right Goldie.

(iii) RR has finite Goldie dimension.

(iv) If S is an isosimple right ideal of R and IS the ideal which is
the sum of all the right ideals isomorphic to S , then IS is a
finite direct sum of isosimple right ideals.

(v) RR is a (direct) sum of isosimple right ideals.



The Wedderburn Theorem

Classical result:

Theorem
(The Wedderburn Theorem) A ring R is simple and right artinian
if and only if R is a matrix ring over a division ring.

Iso result:

Theorem
A ring R is simple and right isoartinian if and only if R is a matrix
ring over a simple principal right ideal domain.
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Commutative semiprime rings

Classical result:

Proposition

A commutative semiprime ring is artinian if and only if it is
isomorphic to a finite direct product of fields.

Iso result:

Proposition

A commutative semiprime ring is isoartinian if and only if it is
isomorphic to a finite direct product of principal ideal domains.
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Theorem
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Iso result:

Theorem
If D is a right isonoetherian domain, then D is a right Ore domain.
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Krull dimension

Classical definition:
The class Kα of modules of Krull dimension α is defined as
follows.

The class K−1 contains all modules M = 0. If the class
Kβ of modules of Krull dimension β has been defined for every
β < α, then Kα is defined as the class of all modules M such that

(a) M /∈
⋃
β<αKβ;

(b) for every countable descending chain A0 ≥ A1 ≥ A2 ≥ . . . of
submodules of M, there exists an index n such that the
factors Ai/Ai+1 belong to

⋃
β<αKβ for every i ≥ n.
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Krull dimension

If M /∈ Kα for every α one says that M fails to have Krull
dimension, or that K.dim(MR) is not defined.

Thus, K.dim(MR) = −1 if and only if MR = 0

K.dim(MR) = 0 if and only if MR is a non-zero artinian module.
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Artininan dimension

Iso definition:

Let R be a ring and A be the class of all artinian right R-modules.
Let A0 be the set containing only the zero module, and set
A1 := A. Define by induction, for every ordinal number α > 1, Aα
to be the class of all the right R-modules M for which, for every
submodule N of M, either N ∼= M or N ∈

⋃
β<αAβ. If a module

M belongs to some Aα, we say that M has artinian dimension and
the least such α is the artinian dimension of M, denoted by
art. dim(M). If M does not belong to any Aα, we say that M does
not have artinian dimension.
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Artininan dimension

Thus:

(1) The zero module is of artinian dimension 0.

(2) Artinian modules are of artinian dimension 1.

(3) If a module M has artinian dimension, then its submodules
have artinian dimension ≤ art. dim(M).
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Artininan dimension, isoartinian modules, semisimple
artinian rings

Theorem
A module has artinian dimension if and only if it is isoartinian.

Theorem
A ring R is semisimple artinian if and only if all right R-modules
have artinian dimension.
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(Jacobson) radical and isoradical of a ring

Classical definition:
The (right Jacobson) radical rad(RR) of a ring R is the
intersection of the annihilators of all simple right R-modules.

Iso definition:
The right isoradical I-rad(RR) of a ring R is the intersection of the
annihilators of all isosimple right R-modules.

Clearly:
(1) I-rad(RR) is a two-sided ideal of R.
(2) I-rad(RR) ⊆ rad(R) of R.
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But. . .

There exist right noetherian right chain domains in which the right
isoradical and the left isoradical are different.



Radical zero

Classical result:

Proposition

A right artinian ring R is semiprime if and only if its (right
Jacobson) radical rad(R) is zero.

Iso result:

Proposition

A right isoartinian ring R is semiprime if and only if its right
isoradical I-rad(RR) is zero.



Radical zero

Classical result:
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Jacobson) radical rad(R) is zero.

Iso result:

Proposition

A right isoartinian ring R is semiprime if and only if its right
isoradical I-rad(RR) is zero.



Socle and isosocle

Classical definition:

The socle soc(MR) of a module MR is the sum of all simple
submodules of MR .

Let U be any class of right R-modules and Gen(U) the class of all
right modules MR for which there exist an indexed set (Uα)α∈A in
U and an epimorphism ⊕α∈AUα → M.

Set TrM(U) :=
∑
{ h(U) | h : U → M is a homomorphism for some

U ∈ U }. Thus M ∈ Gen(U) if and only if TrM(U) = M.
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Socle and isosocle

Classical definition: For U the class of all simple right R-modules,
TrM(U) = soc(M), the socle of MR .

Iso definition: For U the class of all isosimple right R-modules,
TrM(U) := I-soc(M), the I-socle of MR .

(1) soc(MR) ≤ I-soc(M).

(2) If MR is a nonsingular module, then I-soc(MR) = MR if and
only if MR is the sum of its isosimple submodules.
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Semisimple artinian rings again

Classical result:

Theorem
The following conditions are equivalent for a ring R:
(1) R is semisimple artinian.
(2) soc(R) = R.
(3) R is a sum of simple right ideals.
(4) For any right R-module M, soc(M) = M.
(5) R is a finite direct product of matrix rings over division rings.
(6) R is a direct sum of simple right ideals.
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Iso result:

Theorem
The following conditions are equivalent for a ring R:
(1) I-soc(R) = R.
(2) R is a sum of isosimple right ideals.
(3) For any right R-module M, I-soc(M) = M.
(4) R is a finite direct product of prime right noetherian rings,
each of which is a sum of isosimple right ideals.
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Iso result:

Theorem
The following conditions are equivalent for a ring R:
(1) I-soc(R) = R.
(2) R is a sum of isosimple right ideals.
(3) For any right R-module M, I-soc(M) = M.
(4) R is a finite direct product of prime right noetherian rings,
each of which is a sum of isosimple right ideals.



Semisimple artinian rings again

Theorem
The following conditions are equivalent for a ring R:
(1) R is a finite direct product of matrix rings over principal right
ideal domains.
(2) R is a direct sum of isosimple right ideals.
(3) R is right semihereditary and I-soc(RR) = R.
(4) R is a semiprime right isoartinian right noetherian ring.
(5) R is a semiprime right isoartinian ring and RR is of finite
uniform dimension.



Modules of finite I-length

We say that a chain 0 = P0 < P1 < · · · < Pn = M of submodules
of M is an I-series for M if Pi � Pi+1 for each i and, for every
submodule K of M with Pi ≤ K ≤ Pi+1, we have that either
K ∼= Pi or K ∼= Pi+1.

A module M is said to be of finite I-length if
it has an I-series. In this case, the least such n is called the
I-length of M, 0 = P0 < P1 < · · · < Pn = M is called an I-length
series for M, and we write I-length(M) = n.
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Modules of finite length, modules of finite I-length

Classical result:

Proposition

A module is both noetherian and artinian if and only if it is of
finite length.

Iso result:

Proposition

Let M be a module that is both isonoetherian and isoartinian.
Then M is of finite I-length.

We don’t know if the converse of this proposition holds. We only
have some partial results.
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Some things are different

Proposition

If R is right artinian (right noetherian), then every finitely
generated right R-module is right artinian (right noetherian).

But:

There exist right isoartinian rings with cyclic right modules that
are not isoartinian.
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